Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 102: 105090, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38547578

RESUMO

BACKGROUND: Sarcomas represent an extensive group of malignant diseases affecting mesodermal tissues. Among sarcomas, the clinical management of chondrosarcomas remains a complex challenge, as high-grade tumours do not respond to current therapies. Mutations in the isocitrate dehydrogenase (IDH) 1 and 2 genes are among the most common mutations detected in chondrosarcomas and may represent a therapeutic opportunity. The presence of mutated IDH (mIDH) enzymes results in the accumulation of the oncometabolite 2-HG leading to molecular alterations that contribute to drive tumour growth. METHODS: We developed a personalized medicine strategy based on the targeted NGS/Sanger sequencing of sarcoma samples (n = 6) and the use of matched patient-derived cell lines as a drug-testing platform. The anti-tumour potential of IDH mutations found in two chondrosarcoma cases was analysed in vitro, in vivo and molecularly (transcriptomic and DNA methylation analyses). FINDINGS: We treated several chondrosarcoma models with specific mIDH1/2 inhibitors. Among these treatments, only the mIDH2 inhibitor enasidenib was able to decrease 2-HG levels and efficiently reduce the viability of mIDH2 chondrosarcoma cells. Importantly, oral administration of enasidenib in xenografted mice resulted in a complete abrogation of tumour growth. Enasidenib induced a profound remodelling of the transcriptomic landscape not associated to changes in the 5 mC methylation levels and its anti-tumour effects were associated with the repression of proliferative pathways such as those controlled by E2F factors. INTERPRETATION: Overall, this work provides preclinical evidence for the use of enasidenib to treat mIDH2 chondrosarcomas. FUNDING: Supported by the Spanish Research Agency/FEDER (grants PID2022-142020OB-I00; PID2019-106666RB-I00), the ISC III/FEDER (PI20CIII/00020; DTS18CIII/00005; CB16/12/00390; CB06/07/1009; CB19/07/00057); the GEIS group (GEIS-62); and the PCTI (Asturias)/FEDER (IDI/2021/000027).


Assuntos
Aminopiridinas , Neoplasias Ósseas , Condrossarcoma , Sarcoma , Triazinas , Humanos , Animais , Camundongos , Medicina de Precisão , Condrossarcoma/tratamento farmacológico , Condrossarcoma/genética , Isocitrato Desidrogenase/genética , Mutação , Neoplasias Ósseas/genética
2.
Cardiovasc Diabetol ; 22(1): 44, 2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870961

RESUMO

BACKGROUND: Obesity is a negative chronic metabolic health condition that represents an additional risk for the development of multiple pathologies. Epidemiological studies have shown how maternal obesity or gestational diabetes mellitus during pregnancy constitute serious risk factors in relation to the appearance of cardiometabolic diseases in the offspring. Furthermore, epigenetic remodelling may help explain the molecular mechanisms that underlie these epidemiological findings. Thus, in this study we explored the DNA methylation landscape of children born to mothers with obesity and gestational diabetes during their first year of life. METHODS: We used Illumina Infinium MethylationEPIC BeadChip arrays to profile more than 770,000 genome-wide CpG sites in blood samples from a paediatric longitudinal cohort consisting of 26 children born to mothers who suffered from obesity or obesity with gestational diabetes mellitus during pregnancy and 13 healthy controls (measurements taken at 0, 6 and 12 month; total N = 90). We carried out cross-sectional and longitudinal analyses to derive DNA methylation alterations associated with developmental and pathology-related epigenomics. RESULTS: We identified abundant DNA methylation changes during child development from birth to 6 months and, to a lesser extent, up to 12 months of age. Using cross-sectional analyses, we discovered DNA methylation biomarkers maintained across the first year of life that could discriminate children born to mothers who suffered from obesity or obesity with gestational diabetes. Importantly, enrichment analyses suggested that these alterations constitute epigenetic signatures that affect genes and pathways involved in the metabolism of fatty acids, postnatal developmental processes and mitochondrial bioenergetics, such as CPT1B, SLC38A4, SLC35F3 and FN3K. Finally, we observed evidence of an interaction between developmental DNA methylation changes and maternal metabolic condition alterations. CONCLUSIONS: Our observations highlight the first six months of development as being the most crucial for epigenetic remodelling. Furthermore, our results support the existence of systemic intrauterine foetal programming linked to obesity and gestational diabetes that affects the childhood methylome beyond birth, which involves alterations related to metabolic pathways, and which may interact with ordinary postnatal development programmes.


Assuntos
Diabetes Gestacional , Obesidade Materna , Gravidez , Humanos , Feminino , Criança , Epigenoma , Estudos Transversais , Epigenômica , Obesidade , Epigênese Genética
3.
J Gerontol A Biol Sci Med Sci ; 77(9): 1743-1749, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35299244

RESUMO

Dementia and cognitive disorders are major aging-associated pathologies. The prevalence and severity of these conditions are influenced by both genetic and environmental factors. Reflecting this, epigenetic alterations have been associated with each of these processes, especially at the level of DNA methylation, and such changes may help explain the observed interindividual variability in the development of the 2 pathologies. However, the importance of epigenetic alterations in explaining their etiology is unclear because little is known about the timing of when they appear. Here, using Illumina MethylationEPIC arrays, we have longitudinally analyzed the peripheral blood methylomes of cognitively healthy older adults (>70 year), some of whom went on to develop dementia while others stayed healthy. We have characterized 34 individuals at the prediagnosis stage and at a 4-year follow-up in the postdiagnosis stage (total n = 68). Our results show multiple DNA methylation alterations linked to dementia status, particularly at the level of differentially methylated regions. These loci are associated with several dementia-related genes, including PON1, AP2A2, MAGI2, POT1, ITGAX, PACSIN1, SLC2A8, and EIF4E. We also provide validation of the previously reported epigenetic alteration of HOXB6 and PM20D1. Importantly, we show that most of these regions are already altered in the prediagnosis stage of individuals who go on to develop dementia. In conclusion, our observations suggest that dementia-associated epigenetic patterns that have specific biological features are already present before diagnosis, and thus may be important in the design of epigenetic biomarkers for disease detection based on peripheral tissues.


Assuntos
Metilação de DNA , Demência , Proteínas Adaptadoras de Transdução de Sinal/genética , Idoso , Envelhecimento/genética , Arildialquilfosfatase/genética , Demência/genética , Epigênese Genética , Epigenômica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...